This site uses cookies.
Some of these cookies are essential to the operation of the site,
while others help to improve your experience by providing insights into how the site is being used.
For more information, please see the ProZ.com privacy policy.
English to Serbian - Rates: 0.05 - 0.08 EUR per word / 25 - 35 EUR per hour German to Serbian - Rates: 0.06 - 0.08 EUR per word / 25 - 55 EUR per hour French to Serbian - Rates: 0.06 - 0.08 EUR per word / 25 - 35 EUR per hour
English to Serbian: Direct electrochemical detection of toxic metals in biological samples General field: Science Detailed field: Chemistry; Chem Sci/Eng
Source text - English Direct electrochemical detection of toxic metals in biological samples
Determining actual human exposure to toxic metals through measurement of biological samples is crucial for clinical and epidemiology studies.
For example, long-term human exposure to arsenic can cause several health problems including skin damage, circulatory disorders, and various cancers.
Cadmium is another important metal to monitor as it is considered highly toxic even at trace levels.
A reliable, handheld metal sensor is much needed by epidemiological researchers and health care specialists to facilitate public health monitoring as well as to aid research studies on personal exposure.
Current analytical methods suffer from lengthy and costly sample turnaround times as well as the requirements for specialized staff and equipment.
Moreover, these methods often fail to provide accurate results in the presence of biologically relevant samples such as urine or blood.
Giner, Inc. (Giner) has employed the use of specialty Boron-Doped Diamond (BDD) electrodes combined with a highly sensitive and selective voltammetry techniques to develop an electrochemical sensor for real-time measurement of trace levels of toxic metals in urine.
For example, with specially configured BDD arrays, cadmium concentrations of less than 1 part per billion (ppb) were measured even in the presence of other metals such as sodium, potassium, lead, zinc and copper.
In another example, a customized detection algorithm was developed to simultaneously determine individual arsenic species (both inorganic and organic) at levels less than 5 ppb.
This is a direct electrochemical detection method from a single 2 mL urine sample that yields speciation of arsenic in less than 30 minutes without application of any chemical separation or processing steps.
While the intended application for this sensor is to measure urinary metals to assess personal exposure, Giner is also exploring alternative applications for this technology such as quality control in pharmaceutical manufacturing, wastewater monitoring, and enviromental metal analysis for surface and groundwater.
Translation - Serbian Direktno određivanje toksičnih metala u biološkim uzorcima elektrohemijskom metodom
Određivanje stvarne izloženosti ljudi toksičnim metalima putem merenja bioloških uzoraka je od suštinske važnosti za kliničke i epidemiološke studije.
Na primer, dugotrajna izloženost arsenu može da prouzrokuje više zdravstvenih problema kod ljudi, uključujući oštećenja kože, poremećaj cirkulacije, kao i različite oblike kancera.
Još jedan metal koga treba pratiti je kadmijum, jer se smatra izuzetno toksičnim čak i kada se nalazi u tragovima.
Epidemiolozima i zdravstvenim radnicima bio bi veoma potreban pouzdan ručni metalni senzor, koji bi olakšao praćenje javnog zdravlja i bio od koristi u istraživačkim studijama o izloženosti toksinima.
Nedostatak postojećih analitičkih metoda predstavlja dugotrajna i skupa priprema uzorka, kao i zahtevi za stručnim osobljem i specijalnom opremom.
Osim toga, te metode često ne daju tačne rezultate u prisustvu bitnih bioloških uzoraka, kao što su urin ili krv.
Kompanija Giner, Inc. (Giner) spojila je upotrebu specijalnih elektroda izrađenih od dijamanta sa primesama bora (Boron-Doped Diamond, BDD) sa visokoosetljivom i selektivnom voltametrijskom tehnikom, i tako razvila elektrohemijski senzor za brzo određivanje tragova toksičnih metala u urinu.
Na primer, sa specijalno podešenim BDD mogu da se izmere koncentracije kadmijuma manje od 1 ppb, čak i u prisustvu drugih metala, kao što su natrijum, kalijum, olovo, cink i bakar.
U drugom primeru je razvijen odgovarajući algoritam za detekciju, kako bi se istovremeno odredile različite forme arsena (neorganskog i organskog) u koncentracijama manjim od 5 ppb.
To je direktan metod za elektrohemijsku detekciju iz pojedinačnog uzorka urina zapremine 2 ml, pomoću koga se specifične forme arsena određuju za manje od 30 minuta, bez primene separacionih hemijskih metoda ili posebne obrade.
Mada je prvenstvena namena ovog senzora merenje sadržaja metala u urinu, sa ciljem da se odredi pojedinačna izloženost, Giner takođe istražuje alternativnu primenu ove tehnologije, npr. za kontrolu kvaliteta u farmaceutskoj proizvodnji, praćenje otpadnih voda, kao i za određivanje metala u životnoj sredini, tj. u površinskim i otpadnim vodama.
German to Serbian: HPLC für Neueinsteiger General field: Tech/Engineering Detailed field: Chemistry; Chem Sci/Eng
Source text - German Wie funktionieren die einzelnen teile einer HPLC-Anlage
Pumpe
Der Eluent (mobile Phase, Laufmittel) wird aus einem Vorratsgefäβ angesaugt und gelangt durch ein Einlassventil in den Kolbenraum der Pumpe.
Der Kolben komprimiert den Eluenten und drückt ihn durch das Auslassventil in den Teil der HPLC Anlage, die den Injektor, die Säule und den Detektor enthält.
Eine Pumpe enthält oft zwei Kolben (Doppelkolbenpumpe).
Während der eine das Laufmittel ansaugt, drückt der zweite Kolben das zuvor angesaugte Laufmittel durch das Auslassventil in die HPLC Anlage
Dieser Vorgang wird mittels modernster Mechanik und Elektronik exakt gesteuert, so dass ein konstanter Fluss möglichst ohne Druckschwankungen gewährleistet wird.
Vor Verlassen der Pumpe wird das Laufmittel noch durch einen Druckaufnehmer geleitet.
Dort wird der Druck gemessen.
Der Druckbereich variiert je nach Säule und eingesetztem Laufmittel von ca. 50 bis ca. 350 bar (70 bar = 1000 psi, bei der UHPLC –Ultra High Performance Liquid Chromatography sind Drücke bis ca. 1400 bar möglich).
Dieser Druck sollte bei Betrieb im Auge behalten/aufgezeichnet werden, da durch ihn indirekte Verstopfungen, Flussschwankungen oder Leckagen erkannt werden können.
Injektor
Mittels des injektors wird die Probe in die HPLC-Anlage eingebracht.
Er befindet sich im Eluentenstrom direct hinter der Pumpe.
Die Probe muss dabei mit “Normaldruck” in den Druckbereich der Anlage gebracht werden.
Der am häufigsten eingesetzte Handinjektor ist das sogenannte Rheodyneventil.
Es ist im Prinzip ein Sechswegeventil.
An zwei Einlässen ist eine Schleife eingebracht.
Sie kann zum einem eine fest definierte Menge (meist 10 oder 20 µl) fassen und wird mit der probe überfüllt, oder man gibt mit einer exakten Spritze definierte Probenvolumina in die Schleife.
Durch umlegen eines Hebels wird der Eluentenstrom durch die Aufgabeschleife geleitet und spüllt so die Probe auf die Säule.
Bei einem Autoinjektor (Autosampler, Probengeber) ist dieser Vorgang automatisiert.
Wie das genau geschieht, unterscheidet sich recht häufig von Hersteller zu Hersteller.
Translation - Serbian Kako funkcionišu pojedini delovi HPLC aparata
Pumpa
Sredstvo za ispiranje (mobilna faza, eluent) usisava se iz suda koji se nalazi pored aparata, i kroz ulazni ventil ulazi u komoru klipa.
Klip sabija mobilnu fazu i potiskuje je kroz ispusni ventil u deo uređaja koji se sastoji od injektora, kolone i detektora.
Pumpa često ima dva klipa (dvoklipna pumpa)
Dok jedan klip usisava mobilnu fazu, drugi potiskuje već usisanu mobilnu fazu kroz ispusni ventil u HPLC uređaj.
Ovaj proces se precizno kontroliše uz pomoć najmodernije mehanike i elektronike, što omogućava konstantan protok bez varijacija pritiska.
Mobilna faza pre izlaska iz pumpe još prolazi kroz merač pritiska.
Tu se pritisak meri.
Opseg pritiska varira u zavisnosti od kolone i mobilne faze koja se koristi, u rasponu od oko 50 bara do oko 350 bara (70 bar = 1000 psi kada je u pitanju UPLC – Ultra Performance Liquid Chromatography – mogući su pritisci i do 1400 bar).
U toku rada treba paziti na pritisak, jer on indirektno može da ukaže na začepljenje, varijacije protoka i curenje.
Injektor
Pomoću injektora se uzorak ubacuje u HPLC aparat.
On se nalazi u struji mobilne faze, odmah iza pumpe.
Pri tome uzorak koji je na ″normalnom″ pritisku mora da se unese u uređaj koji je pod pritiskom.
Najčešće primenjivani ručni injektor je takozvani Rheodyne ventil.
To je, u suštini, šestokraki ventil.
Na dva ulaza se nalazi petlja.
Ona može odjednom da primi tačno definisanu zapreminu (obično 10 ili 20 μl), i prepuni se uzorkom, ili se pomoću preciznog šprica u petlju unese tačno definisana zapremina uzorka.
Struja mobilne faze se okretanjem ručice usmeri kroz petlju, i tako se uzorak spira na kolonu.
Kod autoinjektora (autosamplera) ovaj postupak je automatizovan.
Kako to obično biva, obično se razlikuje od proizvođača do proizvođača
English to Serbian: Master’s thesis ˮSynthesis of New 4’-Thioribonucleosides with Fluoride Isosteric Analogues of Pyrimidine Basesˮ, Biljana Stojanović General field: Science Detailed field: Chemistry; Chem Sci/Eng
Source text - English U toku ovog rada ostvarena je stereospecifična sinteza metil α-D-liksopiranozida 9 iz D-ksiloze.
Višefaznim hemijskim transformacijama glikozida 9 sintetisan je tiošećer 1,2:3,5-tetra-O-acetil-4-tio-β-L-ribofuranoza (14), koji je reakcijom sa modifikovanim pirimidinskim bazama sa fluoridnom izosternom funkcijom konvertovan u nove analoge prirodnih nukleozida 3-(4’-tio-L-ribofuranozil)-5-fluorouracil (17) i 3-(4’-tio-L-ribofuranozil)-5-fluorocitozin (20).
Kondenzacijom D-ksiloze sa cikloheksanonom u etru sintetizovana je 1,2:3,5-di-O-cikloheksiliden- α-D-ksilofuranoza (1).
Parcijalnom hidrolizom jedinjenja 1 dobijena je 1,2-O-cikloheksiliden-α-D-ksilofuranoza (2), koja u reakciji sa benzil hloridom daje 3,5-di-O-benzil-1,2-O-cikloheksiliden-α-D-ksilofuranozu (3).
Uklanjanjem cikloheksilidenske zaštitne funkcije iz jedinjenja 3 sintetizovana je 3,5-di-O-benzil-D-ksiloza (4).
Reakcijom jedinjenja 4 sa metansulfonilhloridom dobijena je 3,5-di-O-benzil-2-O-metansulfonil-D-ksilofuranoza (5).
Dejstvom natrijum metoksida na jedinjenje 5 sintetizovan je metil 3,5-di-O-benzil α-D-liksofuranozid (7) kao jedini stereoizomer.
Katalitičkim hidrogenovanjem jedinjenja 7 dobijen je metil α-D-liksofuranozid (8), čijom izomerizacijom je dobijen metil α-D-liksopiranozid (9) kao jedini stereoizomer.
Glikozid 9 sa 2,2-dimetoksipropanom daje izopropilidenski derivat 10.
Reakcijom jedinjenja 10 sa anhidridom trifluorometanske kiseline nastaje nestabilni 4-O-triflatni estar 11, koji je odmah tretiran kalijum tioacetatom i preveden u stabilni metil 4-S-acetil-2,3-O-izopropiliden-4-tio-β-L-ribopiranozid (12).
Hidrolizom izopropilidenske zaštitne funkcije u jedinjenju 12 dobijena je smeša očekivanog metil 4-S-acetil-4-tio-β-L-ribopiranozida (13) i metil 3-O-acetil-4-tio-β-L-ribopiranozida (13a), koji je sporedni proizvod.
Smeša izomernih acetil derivata 13 i 13a je bez razdvajanja podvrgnuta acetolizi, i dobijena je kristalna 1,2,3,5-tetra-O-acetil-4-tio-β-L-ribofuranoza (14) kao jedini stereoizomer.
Siliranjem 5-fluorouracila dobijen je trimetilsilil derivat 15, koji je zatim kondenzovan sa tiošećerom 14 u prisustvu trimetilsilil triflata, pri čemu je dobijena smeša α i β anomera 3-(2’,3’,5’-tri-O-acetil-4’-tio-L-ribofuranozil)-5-fluorouracila (16) u međusobnom odnosu 2:11.
Deprotekcijom anomerne smeše 16 dobijen je slobodni nukleozid 3-(4’-tio-L-ribofuranozil)-5-fluorouracil (17) kao smeša α i β anomera u odnosu 1:6.
Polazeći od siliranog derivate 5-fluorocitozina 18 i tiošećera 14, na analogan način je sintetizovan 3-(2’,3’,5’-tri-O-acetil-4’-tio-L-ribofuranozil)-5-fluorocitozin (19) kao jedini stereoizomer kad je rađeno na maloj skali, dok je pri radu na većoj skali dobijena smeša α i β anomera u odnosu 1:10.
Deacetilovanjem smeše 19 dobijen je 3-(4’-tio-L-ribofuranozil)-5-fluorocitozin (20) kao smeša α i β anomera u odnosu 1:10.
Translation - Serbian In this work, the stereospecific synthesis of methyl α-D-lyxopyranoside 9 from D-xylose has been achieved.
By multistep chemical transformations of the glycoside 9, the thiosugar 1,2:3,5-tetra-O-acetyl-4-thio-β-L-ribofuranose (14) has been synthesized. In the reaction with modified pyrimydine bases with fluoride isosteric group, the thiosugar 14 has been converted into the new nucleoside analogues 3-(4’-thio-L-ribofuranosyl)-5-fluorouracyl (17) and 3-(4’-thio-L-ribofuranosyl)-5-fluorocytosine (20).
By condensation of D-xylose with cycloxexanone in ether, 1,2:3,5-di-O-cyclohexylidene-α-D-xylofuranose (1) was synthesized.
By partial hydrolysis of 1, 1,2-O-cyclohexylidene-α-D-xylofuranose (2) was obtained, which in the reaction with benzyl chloride gave 3,5-di-O-benzyl-1,2-O-cyclohexylidene-α-D-xylofuranose (3).
Removal of cyclohexylidene protective group from 3 gave 3,5-di-O-benzyl-D-xylose (4).
In the reaction with methanesulfonyl chloride, 4 was converted to 3,5-di-O-benzyl-2-O-methanesulfonyl-D-xylofuranose (5).
5 reacted with sodium methoxyde to give methyl 3,5-di-O-benzyl α-D-lyxofuranoside (7) as the only stereoisomer.
By catalytic hydrogenation of 7, methyl α-D-lyxofuranoside (8) was obtained, which by isomerization gave methyl α-D-lyxopyranoside (9) as the only stereoisomer.
Glycoside 9 in the reaction with 2,2-dimethoxypropane produced the isopropylidene derivative 10.
Reaction of 10 with trifluoromethanesulfonic anhydride produced the unstable 4-O-triflic ester 11, which was immediately treated with potassium thioacetate and converted into the stable methyl 4-S-acetyl-2,3-O-isopropylidene-4-thio-β-L-ribopyranoside (12).
Hydrolysis of isopropylidene protecting function of 12 gave the mixture of the expected methyl 4-S-acetyl-4-thio-β-L-ribopyranoside (13) and methyl 3-O-acetyl-4-thio-β-L-ribopyranoside (13a), as the by-product.
By acetolysis of the mixture of isomeric acetyl derivatives 13 and 13a, crystalline 1,2,3,5-tetra-O-acetyl-4-thio-β-L-ribofuranose (14) was obtained, as the only stereoisomer.
5-fluorouracyl was converted to its trimethylsilyl derivative (15), which was subsequently condensed with thiosugar 14 in the presence of trimethylsilyl triflate, and the mixture of α and β anomers of 3-(2’,3’,5’-tri-O-acetyl-4’-thio-L-ribofuranosyl)-5-fluorouracyl (16) was obtained (α/β=2:11).
By deprotection of anomeric mixture 16, nucleoside 3-(4’-thio-L-ribofuranosyl)-5-fluorouracyl (17) was obtained, as the mixture of α and β anomers (α/β=1:6).
Analogously, in the reaction of silylated derivative of 5-fluorocytosine 18 with thiosugar 14, 3-(2’,3’,5’-tri-O-acetyl-4’-thio-L-ribofuranosyl)-5-fluorocytosine (19) was synthesized, as the only stereoisomer on the small scale, while on larger scale a mixture of anomers (α/β=1:10) was obtained.
By deacetylation of mixture 19, 3-(4’-thio-L-ribofuranosyl)-5-fluorocytosine (20) was synthesized, as the anomeric mixture (α/β=1:10)
English to Serbian: Positive Effects of Sport and Physical Activity on Well-being of Women, Irina Juhas General field: Science Detailed field: Sports / Fitness / Recreation
Source text - English DOBROBITI ZA FIZIČKE SPOSOBNOSTI
Iako žene ispoljavaju manju snagu od muškaraca, adaptacija na trening snage kod žena se ne razlikuje od muškaraca, zbog čega ne postoji nijedan razlog da žene sportistkinje ne primenjuju iste trenažne metode kao i muškarci.
Tokom treninga snage potrebno je aktivirati sva dostupna mišićna vlakna, što zahteva veće opterećenje, upotrebu određenih tehnika bodibildinga, da bi se razvila hipertrofija potrebna za određene grupe mišića i stimulisao fizički razvoj celokupne muskulature.
Generalno, istraživanja pokazuju da kod žena češće dolazi do nekih povreda, na pr. distorzija skočnog zgloba, dislokacija patele, distorzije i kontuzije ramena, povrede zadnje lože mišića natkolenice.
Smatra se da je „labavost” zglobova uzrok povreda u 40 % slučajeva.
Pliometrijski trening ima značajan uticaj na prevenciju povrede kolena (prednje ukrštene veze), za koju se smatra da je česta u sportu kod žena.
Translation - Serbian POSITIVE EFFECTS ON PHYSICAL ABILITIES
Although women exhibit less strength than men, adaptation to strength training in women is not different than in men, so there is no reason for the female athletes not to apply the same training methods as men.
During strength training, it is necessary to activate all available muscle fibers, and that requires higher intensity, the use of certain bodybuilding techniques, in order to develop hypertrophy necessary for specific muscle groups, and to stimulate physical development of the entire muscular system.
In general, research shows that ankle distortion, patellar dislocation, distortions and contusions of shoulder, elbow, fingers and knee, as well as injuries of hamstring muscles of thigh are most common among women.
It is believed that the „laxity” of joints is the cause of injury in 40% of cases.
Plyometric training has a significant impact on the prevention of knee injury (anterior cruciate ligament), considered to be common in women's sport.
English to Serbian: Orienteering race analysis: personal orienteering style and mental models General field: Other Detailed field: Sports / Fitness / Recreation
Source text - English Orienteering race analysis: personal orienteering style and mental models
Basic skills
Map reading
Map reading / interpretation: How successful was I in reading / interpreting the map? Any difficulties?
Contours: Was I able to form a mental map of the terrain features based on the map? In any difficulties, in what kind of detail?
What was most difficult to understand in the map?
Essential features / simplification: Did I find the essential on the map or was a reading too much
(orienteering point to point)?
Route choice: Did I manage to choose the best routes for my skill and ability based on this map?
Compass use
Precise bearing: If there were controls that needed compass bearing to take, how did this
(and pacing succeed)?
Did I hit the control straight or did I drift
left/right?
General bearing: How did I manage to maintain correct bearing on the legs with little / too much to read?
Orienteering technique (mental models)
Planning
Did I make a plan on EACH leg?
When did I plan the leg?
What was the content of the leg plan?
Did the plan include the whole leg?
Was the plan just a route choice or did I include the essential features?
If essential features were included, were they only en route or also beside it (”railings)?
Did I take into account control taking (attack point, enlargement, visibility)
Legs
Did I manage to stay on the intended route? – Draw on your race map both the route ran and the planned route (e.g. dotted line) if it was different
Observation: draw (e.g. with a pencil) arrows from your route to what you saw
Did I observe sufficiently far ahead and aside (or behind) or only features close to where I was?
Were the observation expected (map-terrain) or unexpected (terrain-map)?
”Traffic lights”: How did I manage to regulate my running speed? Was I trying to run too fast in relation to my condition and orienteering skill?
”Future orientation”: Did I manage to think ahead or were my legs faster than my head...
”Fluency” of my orienteering: draw a cross-line on your route on the map in the places where you had to stop.
Why did you stop?
Use of compass: Where did I use the compass and in what purpose (orienting the map, compass bearing)? How did I manage to coordinate compass use and map reading?
Difficulties: Where and what type of controls? Why?
Translation - Serbian Analiza orijentiring trke: lični stil u orijentiringu i
mentalni modeli
Osnovne veštine
Čitanje mape
Čitanje/tumačenje mape: Koliko sam bio/la uspešan/na u čitanju/tumačenju mape? Da li je bilo nekih poteškoća?
Izohipse: da li sam mogao/la da stvorim sliku terena predstavljenog na mapi? Ako su postojale poteškoće, kod koje vrste detalja terena?
Šta mi je bilo najteže da shvatim na mapi?
Osnovne karakteristike/uprošćavanje: da li sam našao/la bitne karakteristike na mapi, ili sam previše čitao kartu (orijentacija od tačke do tačke)?
Izbor putanje: Da li sam izabrao/la najbolju putanju za ovu mapu, s obzirom na svoje veštine i mogućnosti?
Upotreba kompasa
Precizna orijentacija: ukoliko su postojale kontrole koje su zahtevale držanje pravca pomoću kompasa, koliko je to bilo uspešno (kao i brzina trčanja)?
Da li sam odmah našao/la kontrolu, ili sam otišao/la ulevo/udesno?
Opšta orijentacija: kako sam uspeo/la da održim ispravan pravac u trkama, sa malo/previše čitanja karte?
Orijentiring tehnika (mentalni modeli)
Planiranje
Da li sam napravio/la plan za SVAKU trku?
Kada sam isplanirao/la trku?
U čemu se sastojao plan trke?
Da li je planom bila obuhvaćena cela trka?
Da li je plan predstavljao samo izbor puta, ili je obuhvatao i bitne karakteristike?
Ako su bile obuhvaćene i bitne karakteristike, da li se to odnosilo samo na stazu ili i na teren pored staze („vođice”)?
Da li sam razmotrio/la napadanje kontrole (napadnu tačku, uvećanje, vidljivost)
Trke
Da li sam uspeo/la da ostanem na nameravanom putu? – Nacrtajte na mapi trke putanju kojom ste trčali i planiranu putanju (npr. tačkastom linijom) ako se te dve putanje razlikuju
Primedba: nacrtajte (npr. olovkom) strelice od Vaše putanje do onoga što ste videli
Da li sam gledao/la dovoljno daleko unapred i sa strane (ili pozadi), ili samo karakteristike blizu mesta gde se nalazim?
Da li su opažanja očekivana (mapa-teren) ili neočekivana (teren-mapa)?
„Semafor”: kako sam uspeo/la da uskladim brzinu trčanja? Da li sam pokušavao/la da trčim previše brzo u odnosu na svoju kondiciju i veštinu orijentacije?
„Buduća orijentacija”: da li sam uspevao/la da razmišljam unapred, ili su mi noge bile brže od glave…
„Tečnost” sa kojom sam se orijentisao/la: nacrtajte krst na mestima na stazi gde ste morali da se zaustavite. Zašto ste se zaustavili?
Upotreba kompasa: gde sam koristio/la kompas, i u koje svrhe (oseveravanje mape, držanje pravca pomoću kompasa)? Kako sam uspevao/la da uskladim upotrebu kompasa i čitanje mape?
Poteškoće: gde su se pojavile, kod kog tipa kontrola? Zašto?
More
Less
Translation education
Master's degree - School Center of the Association of Scientific and Technical Translators of Serbia
Experience
Years of experience: 14. Registered at ProZ.com: May 2014. Became a member: Oct 2015.
I am the scientific and technical translator for English-Serbian, French-Serbian and German-Serbian language pairs, and an expert with the engineering background and scientific experience.
My translation experience is related to my former job in Serbian pharmaceutical company Galenika a.d, first in R&D, and after that in the Quality Control Department. My job included the translation of scientific publications, patents, chapters of scientific books and pharmacopoeias, analytical and manufacturing documentation, etc. in order to create new projects (including extraction of animal tissues and herbs, organic synthesis, stability of drugs), as well as analytical documentation for the registration of drugs and dietary supplements. Since 2010, I have also worked as a translator for other companies. After 25 years in Galenika a.d. I have decided to change a job and to become a freelance translator. In 2013/2014, I finished the one-year post-graduate seminar for scientific, technical and court translators (English language) at the School Center of the Association of Scientific and Technical Translators of Serbia and started a new career.
I have translated pharmaceutical documentation (patents, scientific publications, clinical trials, BP and USP monographs, certificates of suitability, drug master files, safety data sheets, etc.), as well as technical documentation (user manuals, marketing materials, etc.).
I am the author of several scientific publications (a list is available upon request).
This user has earned KudoZ points by helping other translators with PRO-level terms. Click point total(s) to see term translations provided.