This site uses cookies.
Some of these cookies are essential to the operation of the site,
while others help to improve your experience by providing insights into how the site is being used.
For more information, please see the ProZ.com privacy policy.
Freelance translator and/or interpreter, Verified site user
Data security
This person has a SecurePRO™ card. Because this person is not a ProZ.com Plus subscriber, to view his or her SecurePRO™ card you must be a ProZ.com Business member or Plus subscriber.
Affiliations
This person is not affiliated with any business or Blue Board record at ProZ.com.
Source text - Korean 지하 박스 구조물은 토압의 분포 뿐 만 아니라 단면의 두께 및 지반 특성에 따라 거동 특성이 달라진다. 본 연구에서는 펌프장 지하 박스 구조물을 예제로 바닥 슬래브 두께를 등단면과 변단면으로 하였을 경우에 대한 거동 특성을 분석하였으며, 또한 변단면의 경우 토사, 풍화암, 연암, 경암의 지반 조건에 대한 구조물의 거동을 분석하였다.
본 연구를 통한 결론은 다음과 같다.
(1) 펌프장 지하 박스 구조물의 하부슬래브 두께를 변단면으로 하여 해석을 수행하였으며 기존 등단면으로 설계된 결과값과 비교하여 지하 박스 구조물에 대한 일괄적인 단면 두께 적용은 비효율적임을 확인하였다.
(2) 지하 박스 구조물의 바닥슬래브가 변단면일 경우 등단면일 경우에 비해 바닥슬래브 단부의 모멘트가 증가하여 철근량은 다소 증가하였으나 변단면으로 인한 콘크리트량이 약 26% 감소하여 경제적인 측면에서 유리한 것으로 나타났다.
(3) 바닥슬래브의 두께가 변단면일 경우에 대해 토사, 풍화암, 연암, 경암의 지반조건으로 분석을 하였으며 토사에서 경암으로 지반이 견고할수록 구조물 전체의 전단력 분포는 변화가 적었으며 휨모멘트는 크게 감소하였다.
(4) 본 연구를 통해 기존의 지하 박스 구조물에 적용되어온 일률적인 부재 두께는 필요한 두께 이상으로 크게 설계되어 비경제적이였으며 부재 두께를 축소하고 철근량을 증가시킴으로서 자원 및 공사비를 절약할 수 있을 것이다.
Translation - English The underground box structure's movement characteristics not only change according to the distribution of soil pressure, but also the width of its cross-section and the properties of the ground. Using the box structure from the underground pump station as a sample, this research analyzes the characteristics of its movement for the varying dorsal and lateral widths of the bottom slab; in addition, for the lateral sections, the structure's movement in relation to ground conditions of sand, weathering rocks, soft rocks, and hard rocks.
The conclusions that can be drawn from this experiment are as follow:
(1) When the data was interpreted for the various lateral sections of the box structure's lower slab and compared to the results of a construction for a given dorsal section, it was found that applications of cross-sectional widths for the box structure were generally inefficient.
(2) For cases where the box structure's lateral sections were considered, when compared to the dorsal section cases, the momentum of the bottom slab's cross-section increased. This increased the amount of steel but decreased the amount of concrete by approximately 26% according to the laterality, hence demonstrating that it is advantageous from an economical stance.
(3) For cases where the box structure's lateral sections were considered against the various ground conditions of sand, weathering rocks, soft rocks, and hard rocks, the distribution of the structure's normal forces changed insignificantly as the ground hardened from sand to hard rock; however, the bending momentum significantly decreased.
(4) This study found that the width of the material of conventional underground box structures were unnecessarily large, making them uneconomical; hence, by minimizing the width of the material and increasing the amount of steel, the construction resources and cost can be cut down.